第27回(平成30年度)助成事業応募要領公益財団法人関西エネルギー・リサイクル科学研究振興財団

[平成30年度応募要領]

1. 助成の趣旨

エネルギー資源と環境の制約の下で社会の持続的発展を図るためには、電気エネルギーの供給・利用技術、電気エネルギーに係る資源リサイクル技術分野の充実・強化が必要不可欠です。当財団では関西地域における大学・高専等を中心とした同分野の研究活動等を継続的に支援してまいりました。

また、地球温暖化防止に向けた温室効果ガス排出量削減の必要性が益々高まっており、その解決策のひとつとして、電気エネルギー供給・利用関連技術分野のより一層の発展が望まれています。

こうした状況の下で、当財団はこれまでと同様に、同分野における基礎研究の更なる充実と産学連携を視野に入れた挑戦的応用研究の推進、研究者の育成、国際交流の促進等を図るため、研究および国際交流活動に対する助成等を行います。

2. 対象分野

助成の趣旨に合った、電気・電子・情報・通信・土木・建築・機械・化学・バイオ・リサイクル・ テクノロジーアセスメント等の幅広い分野の基礎研究および応用研究等を対象とします。

3. 助成の種類

(1) 試験研究助成

助成の趣旨に合った研究分野に関する研究費を助成します。

(2) 国際交流活動助成

研究者海外渡航と海外研究者招聘の2区分があります。

研究者海外渡航は、助成の趣旨に合った研究分野に関する国際会議、研究発表会等で発表する際 の海外渡航費(航空運賃を主として、会議登録費、滞在費)の一部を助成します。

海外研究者招聘は、助成の趣旨に合った研究分野に関する国際会議等において研究論文の発表も しくは招待講演を行う海外研究者の招聘費(航空運賃および滞在費)の一部を助成します。

(3) 研究成果の出版助成

助成の趣旨に合った研究分野に関する内外学術雑誌(電子ジャーナルを含む)への投稿料等の一部を助成します。

(4) 研究発表会等の開催助成

助成の趣旨に合った研究分野に関する研究発表会、シンポジウム、学会および国際会議等の開催 費用の一部を助成します。

4. 申込者の資格

申込者の資格及び推薦状の要否は次のとおりです。

なお、原則として、同一助成種類の連続した助成は致しません(前年度に助成をお受けになった 方は、同じ種類の助成にはお申込みできません)。

			応募資格(注1)		
助成種類	項目	大学等に 勤務する 研究者(注 2)	博士後期 課程の 大学院生	その他条件	薦 状 (注 4)
試験研究助成		0	_	年齢制限なし (注3)	要
国際交流	研究者海外渡航	0	0	年齢制限なし (注3)	要
活動助成	海外研究者招聘	0	_	年齢制限なし 国際会議の招聘責任者	不要
研究成果の出版助成		0	0	年齢制限なし (注3)	不要
研究発表会	研究発表会等の開催助成		_	年齢制限なし	不要

- (注1) 主として関西地域の大学等。大学等とは、大学院、大学の学部、短期大学、 高等専門学校、大学附置研究所、大学共同利用機関。
- (注2) 常勤の方のみ(非常勤は対象外)。
- (注3) 応募資格に年齢制限はありませんが、若手研究者(概ね40歳以下)、研究歴が浅い研究者(概ね研究歴10年未満)を助成の主要対象とします。
- (注 4) 所属する学部長またはこれに準ずる方の書面による推薦状。電子申請によるお申込み(推薦状をアップロードいただいた場合)でも、別途、書面による推薦状を提出いただくことが必要です。

5. 助成の規模など

(1) 試験研究助成

1件あたりの年額	100万円以下(注1)
採 択 件 数	1 1 件 (注 2)
申 込 締 切 日	平成30年8月31日(金)
研究実施時期	平成31年4月から1年間または2年間(注3)
贈呈時期	平成31年1月~3月の間に贈呈

- (注1) 申請額は、100万円以下であれば幾らでも構いません。なお、助成額以上の領収書提出がない場合は、差額を返還いただきます。
- (注2) 応募資格に年齢制限はありませんが、若手研究者(概ね40歳以下)、研究歴が浅い研究者(概ね研究歴10年未満)を助成の主要対象とします。
- (注3) 研究期間は、1年間または2年間を選択できます。2年間を選択した場合、50万円/年×2年の助成とします。1年後(2月)に中間報告書を提出いただき、中間報告書の審査結果により、2年目の助成の可否を判断します。

(2) 国際交流活動助成

区 分 項 目	研究者海外渡航		海外研究者招聘(注1、2、3)	
1件あたりの金額 20万円以下(注4)		50万円以下(注4)		
採 択 件 数	10件(注5)		1件(注6)	
┃ ┃渡航又は招聘時期	平成30年4月から	平成30年10月から	平成30年4月から	平成30年10月から
仮肌又は怕特时期	平成30年10月まで	平成31年4月まで	平成31年4月まで	平成31年4月まで
申 込 締 切 日	平成30年	平成30年	平成30年	平成30年
	2月28日 (水)	7月31日 (火)	2月28日 (水)	7月31日(火)
贈呈時期	渡航1か月前(目途)		招聘1か月	前(目途)

- (注1) 招聘する外国人研究者は、優れた研究成果を有する方に限ります。
- (注2) この助成と、(4)「研究発表会等の開催助成」とを重複して助成することはありません (助成はどちらか一方のみ)。
- (注3) 原則として、関西地域で開催される国際会議等に招聘する場合に限ります。
- (注4) 助成額以上の領収書提出がない場合は、差額を返還いただきます。
- (注 5) 応募資格に年齢制限はありませんが、若手研究者(概ね40歳以下)、研究歴が浅い研究者 (概ね研究歴10年未満)を助成の主要対象とします。
- (注6)総合防災科学分野と合わせて1件です。

(3) 研究成果の出版助成

	次の期間に論文の学術雑誌 (注 1) 掲載が決定または予定のもの			
論 文 掲 載 時 期	平成30年4月から	平成30年10月から		
	平成31年3月まで	平成31年3月まで		
助成額、採択件数	1件あたり10万円以下(注2)、7件(注3)			
申 込 締 切 日	平成30年2月28日(水)	平成30年7月31日(火)		
贈呈時期	呈 時 期 論文受理後			

- (注1) 電子ジャーナル (国際的な知名度等を有し、査読のプロセスがあるものに限る) を含みます。
- (注2) 助成額以上の領収書提出がない場合は、差額を返還いただきます。
- (注3) 応募資格に年齢制限はありませんが、若手研究者(概ね40歳以下)、研究歴が浅い研究者 (概ね研究歴10年未満)を助成の主要対象とします。

(4) 研究発表会等の開催助成

開	催	時	期	平成30年4月から	平成30年10月から
	1111		774	平成30年10月まで	平成31年3月まで
助成額、採択件数		牛数	1件あたり40万円以下(注1)、3件(注2~6)		
申	込	締 切	日	平成30年2月28日(水)	平成30年7月31日(火)
贈	呈	時	期	開催1か月	前(目途)

- (注1) 助成額以上の領収書提出がない場合は、差額を返還いただきます。
- (注2) 原則として、関西地域で開催される公開のものに限ります。
- (注3) 学会の年次大会、支部大会等は対象外です。
- (注 4) この助成は、原則として同一団体、同一内容の発表会等に連続して助成しません(前年度に この助成をお受けになった方および団体はお申込みできません)。
- (注 5) この助成と、(2)「国際交流活動助成(海外研究者招聘)」とを重複して助成することはありません(助成はどちらか一方のみ)。
- (注 6) 開催実績報告書および当財団から助成を受けた旨を周知したことを示すものをお送りいただくことが必要です。

6. 選考方法

当財団の選考委員会において厳正かつ公平な審査を行い、決定いたします。結果は、申込者全員にご連絡いたします。

選考委員会は、下記委員により構成しております(敬称略、五十音順)。

 北村 新三 (委員長)
 神戸大学名誉教授

 久保 司郎
 大阪大学名誉教授

 辰巳砂 昌弘
 大阪府立大学教授

 馬場 章夫
 大阪大学名誉教授

 八尾
 健

 吉川
 京都大学名誉教授

 京都大学名誉教授

7. 選考基準

選考は、下記の点を考慮し、総合的に評価します。

- (1) 共通基準
 - ・内容が当財団の趣旨と合致するもの。
 - ・当財団の助成金が真に有意義な資金となるもの。
- (2) 試験研究助成
 - ・研究内容が基礎的であり、発展性が見込まれるもの。または、研究内容が応用分野に及び、近く実用化が見込まれるもの。
 - ・研究計画、研究手法が独創的、意欲的であるもの。
 - ・研究計画、研究内容と助成金の使途との関係が明確で、整合性が認められるもの。
- (3) 国際交流活動助成
 - ・国際交流活動によって得られる成果、与える効果が大きいと期待できるもの。
 - ・その他「研究助成」の選考基準に準じて総合的に評価します。
- (4) 研究成果の出版助成
 - ・「研究助成」の選考基準に準じて総合的に評価します。
- (5) 研究発表会等の開催助成
 - ・「研究助成」の選考基準に準じて総合的に評価します。

8. 留意事項

お申込みに際して、下記事項をご了承いただけたものとします。

(1) 共通

- ア. 助成金は、その目的達成のため最も有効にご活用願います。なお、研究等終了後の報告時には、 使途についての記録と領収書(正)を添付願います。また、助成金採択通知以降の詳細な処 理手続き等については、別途配布の「KRF研究助成者手引き」に基づき、確実な処理をお 願いいたします。
- イ. 研究発表、論文の掲載等をされる場合は、当財団から助成を受けた旨を記載し、周知をお願いいたします。
- ウ. 助成の採択情報および成果の報告内容等は、当財団の事業報告書、インターネットホームページ、KRFレポート(当財団広報誌)などに記載させていただくことがあります。ただし、知的所有権等の関係上、公開したくない部分については、申し出に応じて取り扱いを協議します。「9. 個人情報の取り扱いについて」も併せてご覧ください。
- エ. 助成額は、お申込額より減額されることがあります。
- オ.申請書提出後、所属機関やメールアドレス等が変更となった場合は、ご連絡をお願いします。
- (2) 試験研究助成
 - ア. 助成金は、申請書に記載された項目で支出いただきます。
 - イ. 助成した研究費の支出が適切でなかったり、研究計画を大きく変更または途中で中止した場合等においては、助成した助成金の返還を求めることがあります。
 - ウ. 贈呈式(平成31年3月予定)にご出席いただきます。
 - エ. 贈呈に際し、助成研究の計画について発表していただくことがあります。

- オ. 助成研究の結果については、研究終了後に簡単な報告書を提出していただきます。
- カ. 助成期間終了後に助成研究に関するアンケートを行いますので、ご協力をお願いいたします。
- キ. 当財団の研究発表会および学会等で、研究成果の発表等をお願いすることがあります。

(3) 国際交流活動助成

- ア. 国際会議、学会などでの研究発表、意見交換を主たる交流内容とするものは、発表論文が受理されなかった場合、助成を取り消させていただきます。
- イ. 国際会議、学会などの開催が当初の計画より大幅に遅れる場合には助成を取り消させていただくことがあります。
- ウ. 国際交流活動の成果については、終了後に簡単な報告書を提出していただきます。
- エ. 当財団の研究発表会で国際交流の成果について、ご報告等をお願いすることがあります。

(4) 研究成果の出版助成

- ア. 学術雑誌投稿論文が翌年度までに受理されなかった場合、助成を取り消させていただきます。
- イ. 投稿論文については、別刷等をご提出いただきます。
- (5) 研究発表会等の開催助成
 - ア. 申請時に研究発表会等の予稿集、配布資料など概要がわかる資料をご提出いただきます。
 - イ. 研究発表会等が公開の場合は、当財団事務局長まで案内状等の関連資料のご送付をお願いします。 なお、開催日時等申請時から変更があった場合は、その都度ご連絡をお願いします。
 - ウ. 研究発表会等の成果については、終了後に簡単な報告書を提出していただきます。また、当 財団の助成を受けたことの周知方法を示したプロシーディング、ポスター等を提出していた だきます。

9. 個人情報の取り扱いについて

応募書類から得た個人情報および研究情報は、当財団のプライバシーポリシー(http://www.krf.or.jp/other/privacy.html)に基づき取り扱いますが、下記の利用目的に使用する場合があります。ただし、知的所有権等の関係上、公開できない部分については、申し出に応じて取り扱いを協議します。

お申込みに際して、本内容をご了承いただけたものとします。

- ・実績または成果等の情報公開のため
- ・募集、周知・PR、情報提供のため
- ・調査およびその結果のフィードバック等の実施ならびに今後の方向性等の検討のため
- ・会議・式典の運営、資料送付、情報連絡等のため
- ・関係者との意見交換・情報連絡等のため
- ・その他、当財団の事業目的のために行う業務の達成のため

10. 申込方法

当財団ホームページ(http://www.krf.or.jp/)上の「研究者専用ページ」(研究者登録が必要です)から、応募書類をダウンロードし、申請書に記入の上、電子申請にてお申込みください。申請いただいた後も、申込締切日までは、同ページから内容の修正等をしていただくことが可能です。

なお、書面による申込みをご希望の方は、申請書に必要事項を記入の上、1部を財団事務局まで、 申込締切日必着にてご送付願います。

また、所定の申請書のほか、所定の申請書様式と同一であれば、自作の申請書(白色無地)でもお申込み可能です(枚数および様式の変更は不可。枠の大きさ等多少の変動は構いません)。

11. 申請書の請求(書面による申込みをご希望の方)および送付先、本件のお問い合わせ先

〒 550-0004 大阪市西区靭本町1丁目8番4号 大阪科学技術センタービル607号室 公益財団法人 関西エネルギー・リサイクル科学研究振興財団

TEL: (06) 7506-9068 FAX: (06) 7506-9069 http://www.krf.or.jp e-mail: info@krf.or.jp

※申請書の請求は、ホームページからもできます。また、ご希望の方は、申請書(Word形式)をe-mailにて送信いたします。

過去に採択された試験研究助成件名の研究分類別一覧(1/5)

JULY Z	ハー]木]八〇イい(二武河大切) 元の]	成件名の研究分類別一員	, (1/3)	
年度	エネルギーの変		エネルギー利用の効率化	多様なエネルキー資源の利用
	◎バイオ・電気エネルギー変換システムの 基礎研究(細胞と電極との電子	◎マイクロ波エネルギー伝送用アンテナの開発	◎排熱回収によるエネルド-有効利 用のための高効率伝熱技術に関	◎水素発生システムのメカニズムの解明 と利用ーヒドロゲナーゼの構造学的
H4	伝達インターフェイシング)		する基礎研究 ◎太陽電池シリコン系ガスの省	研究一
			エネルギー製造プロセスの開発	
			◎超微粒子生成 C V D 反応への 電気エネルギーの有効利用	
	◎多結晶シリコン薄膜を用いる高効率・低コストな新型太陽電池	◎CuInSe2薄膜太陽電池 の高効率化に関する研究	◎高性能光触媒の開発による光 化学プロセスのエネルギー効率の向上	◎バイオ発酵で得られるエタノール水 溶液の膜分離法による濃縮・分
			16寸/ μελυノエヤルキ 「刈牛リリ中上	で収い味力産本による振舶・ガ 離
	◎Cu(In, Ga)Se2系薄膜太陽電池の作製に関する研究	◎半導体ダイヤモンドを窓層に用いた高変換効率太陽電池に関する		
H5		基礎研究		
	◎太陽エネルギーを有効利用するための新規光電変換素子の開発お	◎フラーレンを用いた新しい光機能 性物質の開発		◎石炭を利用した都市下水汚泥の火力発電用流体燃料への変換
	よび人工光合成へのアプローチ			のヘルガ电用加冲燃料への変換
Н6	◎高エネルギー密度リチウム電池電極用 新機能材料の探索	◎光エネルギーを利用する次世代有機合成プロセスの開発		
	◎ニッケルー水素電池の高エネルギー密 度化と長寿命化に関する基礎研	◎高効率熱電変換素子の開発と それを用いた水素製造プラントに		
	究	関する研究		
	◎太陽電池への応用を目指した 高温超伝導体放射線検出器開発	◎光合成エネルギー変換反応の分子 機構に関する構造生物学研究		◎セルラーゼの相乗効果を利用した アルコール直接発酵菌の育種
	の基礎研究			
Н7	◎レーザーアブレーションによる積層型 薄膜太陽電池の形成技術開発	◎ニッケルー水素電池用負極材料と しての水素吸蔵合金の新規作製		◎開発途上国における農業・農村開発のための再生エネルギーの利
	◎パワーデバイス用半導体シリコンカーバ	法と特性評価 ◎超音波噴霧熱分解法による電		用に関する研究
	小がの高品質結晶の育成に関する研究	池活物質の合成とリチウム2次電池への応用		
	つ研究 ◎ イオンビームアシスト蒸着法による有	への応用 ◎人工光合成反応中心の構築に		 ◎木質系リサイクル資源のバイ
	機薄膜の高次構造制御と太陽電池への応用研究	よる電荷分離機構の解明		オマスエネルギー化に関する研究
	◎光合成型有機太陽電池の高効	◎銅系カルコパイライト型半導体の価		◎太陽エネルギを利用した複合型
Н8	率化に関する研究	電子制御と高効率エネルギー変換の ための物質設計		農業パイオマスメタン発酵システムの構築
				◎未利用資源をエタノールに直接変換する細胞構築のための遺伝子
				工学的細胞表層の開拓
	◎鉄系基板表面の半導体化とそ の光電変換機能に関する基礎研	◎共役二重結合系による高効率 光捕集システムのための基礎研		◎トリウムサイクルを用いた原子炉の核特性に関する研究
	究 ◎超高速光化学初期過程の解明	究 ◎太陽電池用透明導電性窓材料		
H9	に基づく高効率有機光電エネルギー変換システムの構築	の新規合成法と物性制御に関する研究		
	◎ミリ波分光によるリチウムイ	U 1917 L		
	オン二次電池材料の研究 ◎液相析出法による複合金属酸	 ◎高密度バイオ電極の開発に関		
	化物薄膜の電気化学特性とエネルギー変換材料への展開	する基盤研究		
	◎メカニカルアロイング法による高濃度	◎高電子伝導性酸化物を活物質		
H10	水素貯蔵非平衡合金の創製と構 造学的研究	に用いた新型汎用電池の開発と 性能評価		
	◎高分子超薄膜による光誘起電荷分離過程の制御と有機光電変	◎表面プラズモンによる有機薄膜太陽電池の高効率光励起		
	換膜への応用 ◎ポーラス金属の創製と電池電	THE PARTY OF THE P		
	極材料への応用開発			
	◎半導体ナノクリスタルを用いた量子効果型太陽電池の研究	◎太陽光発電、熱電発電器を併用したハイブリッド型分散電源	◎地域エネルギー利用バイナ リー発電システムの最適化	◎地下蓄熱水槽を利用した地域 冷房による密集住宅地の温熱環
		システムの系統連系	◎マイクロガスタービン翼周り	境と地域コミュニティの再生 ②自動車用エネルギーリサイク
H11	◎高分子への分子拡散法を用い た高効率有機太陽電池の開発	◎新規リチウム金属二次電池用 非水電解液系の開発	の剥離および翼面熱伝達の縦渦	◎自動単用エイルキーリザイグルシステムの研究
			による制御	

エネルギーと環境	資源リサイクル	その他
●光合成CO2固定酵素、RuBisCO、の構造活性相関	風傷	て の 地
◎電気化学及び光電気化学プロセスによる二酸化炭素のメタナールへの転換◎流動層石炭燃焼装置からの酸性雨原因物質発生抑止法の最適化	◎ゼオライト化した石炭灰の土壌環境保全への応用に関する研究	
※宝和正法の取過化 ◎農業における資源・エネルギーの節約と環境保全を目的とする高窒素吸収能作物の試作		◎ポリマーアロイを用いた超高容量光記憶電気材料の開発とその基礎研究
◎超音波による有機塩素化合物の低エネルギー消費型無害化法およびフロン吸着剤再生法の開発		
◎t゙オライトのナ/空間を反応場とする光触媒系の構築とNO×の常温無害化 ◎固定化微生物の徐放システムに関する研究		
◎炭酸ガスリサイクルのための新規光合成生物の 育種とその生物の高度利用	◎残廃木材の熱変換による環境浄化・制御材料の開発	◎天然産テトラピロール類の自己会合体による新しい電子材料の創製
◎大型船舶における太陽エネルギー有効利用に関する研究◎ IMDH法による水環境システム再構築に		
関する研究(システムとしての省エネルギー化) ②無機養分の葉緑体内への輸送を駆動する葉		◎偏光板を用いない省エネ型液晶光シャッターの 問念上波見ままでが、2~の広思
緑体包膜の酸化還元反応系 ◎無機層状物質によるCO2の分離・リサイクルに 関する研究		開発と液晶表示デバイスへの応用
◎炭酸固定酵素PEPカルボキシラーゼの立体構造の 解明と遺伝子操作による機能発現の分子機構 および安定化機構の解明		
◎過酸化水素消去酵素アスコルビン酸ペルオキシダーゼの発現調節の解明および高次構造解析	◎エマルジョン系を利用した固体微粒子の分離に関する基礎的研究	◎半導体表面のプロセス技術に関する基礎研究
	◎超臨界水による有機廃棄物の有用物への変換反応のNMR研究	
	◎淡水性シダ植物・アゾラのリサイクル資源化	
	◎表面実装基板及びはんだ付け継ぎ手から鉛回収のための分解技術に関する研究	◎全固体化レーザーによる表面除染技術に関する研究
◎放電プラズマによる燃焼排ガスの処理に関する研究 ◎ 紹恵活性 = 三機		
◎超高活性二元機能光触媒の創成と環境浄化への貢献◎ガンマ線と超微粒子触媒の共同作用による		◎蓄光・蛍光材料を利用したゼロエネ高輝度
環境破壊物質の分解 ©セルロースをエタノールに直接変換できる		照明光源の開発
地球環境浄化型エネルギー産生細胞の構築		
◎微生物による亜硫酸イオン代謝システムの 利用を目指した構造化学的研究		
◎フェムト秒超高強度レーザーによるダイオキシン類の光イオン化と微量分析の研究		
◎超音波特殊反応場を利用した、高機能性金 属微粒子の調製		

過去に採択された試験研究助成件名の研究分類別一覧(2/5)

	過去に採択された試験研究助成件名の研究分類別一覧(2/5) 					
年度	エネルギーの変		エネルギー利用の効率化	多様なエネルギー資源の利用		
H12	◎常温溶融塩のエネルギー貯蔵 デバイスへの展開研究	◎ポリエーテル系アイオネンの 高次構造とイオン伝導性に関す る研究	◎省エネルギーディスプレイのための高効率・高配向液晶性π共役高分子の開発			
n12						
	◎超高速反応における光エネルギー変換の高効率化に向けた基礎的研究◎環境調和型ラミネート構造シ	◎メタノールによる熱エネル ギー輸送システムにおける熱流 動解析◎ナノスペースグラファイト水	◎省エネルギー電磁機器高度設計用代数的マルチグリッド有限 要素法の研究	◎光合成による水素生産システムの開発に関する基礎研究		
H13	リコン太陽電池の開発	素吸蔵材料に関する研究				
H14	◎ナノ有機無機ハイブリッドガラスによる光誘起電荷分離とシースルー太陽 電池への応用	◎疑似固体型イオン伝導体の電気伝導制御と固体表面物性との相関	◎環境共生建築での昼光照明設計法のための標準昼光データの開発	◎都市ゴミなどの未利用バイオマスを水素・メタンに変換する 嫌気性細菌叢の構築		
H14	◎酸化物ナノホールアレイの創生とエネルギー変換デバイス材料への応用		◎次世代型超省電力ディスプレイ用の電子エミッタ材料開発			
	◎固体高分子形燃料電池用セパレータ内の水管理(電池反応生成水の画像計測)◎低温作動型燃料電池用超低白	◎BN系ナノケージ物質の合成・ 構造と水素吸蔵特性に関する研究 ②水素液化磁気冷凍機用磁気冷	◎高効率ガスタービン遮熱コーティングの高温疲労強度向上に関する研究◎配電損失最小構成の動的制御	◎集合型垂直軸風車群による都市型風力発電システムの開発◎超好熱菌を用いた新しい水素		
H15	●は温作動空燃料电池用起低日金量電極触媒の創製 ●コンポジットポリマー電解質	型が系版化磁気が爆破用磁気が 媒の開発~二元系希土類窒化物 の合成とその磁気熱量効果~	●配电損失販小情成の期的制御 手法の開発と配電損失軽減効果 の評価 ●ホモジナイゼーション理論に	□ 短好級国を用いた新しい小系 生産法の開発 □ ○有機性廃棄物を原料とする水		
	のイオン伝導機構の解明		よる積層電磁鋼板の磁気特性の モデリングと鉄損解析 ◎変形誘起変態援用省エネルギ 高機能形態創生法の提案	素生産		
	◎オキソ酸塩系新規中高温型プロトン伝導体の創製と燃料電池への応用	◎有機ハイドライドを媒体とする高効率水素貯蔵システムの開発	◎高圧下における石炭の急速熱 分解・ガス化過程の解明―次世 代型石炭ガス化技術の構築―	◎バイオ電池開発に向けた高度 集積酵素電極の基礎研究		
H46	◎太陽光エネルギーの効率的変換のための新規光触媒材料の開発◎核形成制御による大粒径多結	◎リチウム二次電池の長寿命 化・高出入力化に向けた界面設計 ◎球状ナノ粒子の効率的合成と	◎新世代型超省エネルギー・省 資源的製造プロセスの開発—次 世代型有機変換反応			
	晶シリコン薄膜形成技術の開発 ⑤無線電力伝送のための送電シ ステム低損失化に関する研究開 発	その固体電解質への展開				
	©高効率熱電変換材料Na,CoO₂の 強磁場ESRによるスピン状態の 解明	◎有機半導体のpn制御とP-I-N接合を持つ有機固体太陽電池の開発	◎自動車の燃費向上を指向した 熱電発電によるエネルギーリカ バリーシステムの開発	◎水熱処理を利用した褐炭の脱水、改質、ガス化による発電効率の大幅向上		
H17	◎ユーロピウム錯体-高分子を 用いた高次機能性ソフトマテリアルの開発	◎電界効果トランジスタ型有機 分子レーザーの創製		◎新規ジメチルエーテル (DME)直接合成方法		
	◎混合フォーマー効果を利用した高リチウムイオン伝導体の開発と全固体電池への応用 ◎光合成型色素集積構造による	◎固体蓄冷媒を適用した冷却コスト節約型高温超電導コイルの高機能化に関する研究開発 ◎フラーレン超分子集合体を用	 ◎高温対応エンジン燃焼圧セン	◎生ごみの超高温嫌気性反応器		
	高効率可視光応答ナノマテリアルの創製 ②共役ポリマー/フラーレン相	いた高効率有機光電変換デバイスの開発 ②質量分析法と水素可視化によ	サー材料ランガサイト型結晶の欠陥制御による高抵抗化	の微生物群集解析		
	互浸透界面制御による有機薄膜 太陽電池の研究開発 ◎太陽光と可視光応答型光触媒 を用いた燃料電池用H₂の精製プ	る水素吸蔵合金の水素吸脱繰返 しに伴う材料劣化現象の解明 ◎高効率固体酸化物燃料電池を 目指した電極・電解質一体型傾				
	ロセスの構築 ②金属ガラスの水素貯蔵時における水素脆化割れに関する研究	斜機能材料の開発				

エネルギーと環境	資源リサイクル	その他
◎資源節約・環境保全を目的とした果樹栽培 用微量金属元素その場診断システムの開発		◎フロンフリー冷凍システムのための大きな 磁気熱量効果を持つナノ複合材料
	開発	◎ソフトケミカルプロセスに立脚した環境調和型アパタイト 系吸着材料の開発
	◎リサイクル対応飲料用金属缶の開発	◎半導体製造用特殊ガスの化学反応による無害化処理および再資源化技術の開発
	◎システム的手法による循環型社会の特性分析および形成手法に関する研究	◎金属系構造材料のライフタイム・エクステンションを目的とする直接表面改質技術の開発
	◎資源節約とリサイクルを目的とした環境調和型バイオマス有効利用技術の開発	◎減極作用を利用した機能電解システムの設計と応用 ◎巨大磁気熱量効果を示すMn化合物を用いた
		室温磁気冷凍デバイスの開発 ◎ソフト溶液プロセスによる低環境負荷状態 下での磁性ナノグラニュラ薄膜の作製
◎低温スパッタ法を用いた環境調和型高効率 有機発光素子の開発	◎最終廃棄物リサイクル事業の社会的評価と 利用促進政策の研究: エコレンガを中心に	◎非鉛系はんだの多軸クリープ疲労寿命評価
	◎触媒的炭素―炭素結合切断反応の開発とポリマーのケミカルリサイクルへの応用	
◎インクジェットプロセスによる高移動度ポリマー電界効果トランジスタの開発		◎多重ナノ空間を有する光触媒材料の創製と 形状選択的光エネルギー変換反応
◎高機能オレフィン系ポリマーの環境調和型の精密合成新手法の開拓		◎高イオン導電性フッ素系ゲル電解質の開発 と色素増感太陽電池および二次電池への応用
◎InGaN半導体薄膜を用いた環境配慮型新規 高効率太陽電池開発のための基礎研究		
◎産業用光学活性リパーゼの開発		
◎エコエレクトロニクス材料を用いた光電変換素子開発に関する研究		◎稀少資源液化ヘリウム不要の無冷媒超伝導 磁石による高分解能高周波数ESR装置の開発
◎環境に対応した半導体によるナノ量子空間 励起子光機能性の研究		◎シリコン基板上へのリチウムイオン二次電 池の搭載と非常時電源としての電池特性
◎遠赤色光を利用する海洋性新規シアノバクテリアによる二酸化炭素吸収量の評価		◎原子力用鉄鋼材料の補修技術に関する基礎研究
◎エネルギー創製材料を指向した酸化物ナノチューブの高次構造制御による機能化		
◎マルチエージェントシステムによる自由化された電力市場のモデル化に関する研究	◎使用後水で溶解除去できる有機溶媒フリー 新規光架橋・硬化樹脂の開発	◎表面準位フリー条件下での光起電力分布観 察による太陽電池発電層のナノスケール評価
◎海流エネルギーを利用した超伝導MHD水素発生法の開発に関する基礎研究	◎超臨界水処理技術と並行複発酵法による木 材からのバイオエタノール生産	◎放射廃棄物地層処分のための地中3次元イメージングボアホールレーダの開発
◎再生可能資源を用いた有機−無機ハイブリッド型固体電解質の開発		◎三次元気液二相流の界面運動と界面微細構 造を解明出来る計測方法の開発
◎環境負荷の低減を目指したマイクロカプセルの破壊と薬剤放出の光制御	◎アジアにおける持続的資源循環実現のため のシナリオベースト・シミュレーションに関	◎ダイヤモンド超伝導体デバイスの作製プロセス技術の確立とその基礎研究
	する研究 ◎省金属資源を指向する性状可変金属化学種 の創成と触媒的応用	◎半導体スピントロニクスのための自己組織 化ナノ超構造の計算機マテリアルデザイン
	◎酸素資源の有効利用に基づく環境にやさしいリサイクル酸化触媒系の開発	◎パワーMOSFETのデバイスモデリングとパラメータ抽出に関する研究

<u> </u>		放件名の研究分類別一員	(3/3)	
年度	エネルギーの変	換・貯蔵・伝送	エネルギー利用の効率化	多様なエネルキー資源の利用
	◎SiC半導体のn型とp型用低	◎シリコンナノ構造における多	◎円偏光発光を指向した環境調	◎バイオ燃料生産に向けた機能
		体電子ダイナミクス制御の基礎	和型光学活性超分子発光材料の	性酵素群の大量発現系構築
	開発	的研究	開発	
	◎電極メゾ構造最適設計へ向け	◎分子集合体を用いたパラジウ	◎汚泥燃料化を想定した液化ジ	◎超高温嫌気性消化反応器によ
	た固体酸化物形燃料電池の電極	ムナノ粒子製造プロセスの構築	メチルエーテルによる下水汚泥	る下水汚泥と生ごみの混合発酵
	内有効厚さ評価		の乾燥に関する研究	技術の開発
	* **		◎ソフトリソグラフィー法によ	◎メタン貯蔵・輸送媒体として
			るコアシェル構造を有する酸化	適切な構造H型ハイドレートの
H19			物ナノワイヤメモリデバイス	探索
	◎両極性を有する拡張π共役分	◎ナノサイズ液滴を用いた導電	◎半導体ナノ微粒子における光	
	子の創製とバルクヘテロ型光電	性高分子の高効率製膜法の開発	学定数の量子サイズ効果とその	
	変換素子への応用		制御	
	◎銅カルコゲナイト系薄膜太陽	◎導電性ポリオキソメタレート	◎一方向性のポーラス化を利用	
	電池作製のための非真空プロセ	ナノファイバーの開発	した軽量・衝撃エネルギー吸収	
	スの開発		材料の開発	
	◎フラーレンーカーボンナノ	◎カルコパイライト型半導体	◎省エネルギー効果を指向した	
	チューブ複合体を用いた有機薄	ZnSnP2における規則不規則変態	高移動度かつ高耐久性を有する	
	膜太陽電池	と特性との相関の解明	有機半導体材料の開発	
шоо	◎鉄オキシプニクタイド超伝導	◎データマイニング技術による	◎有機分子を用いた蓄電デバイ	
п20	体の磁性と転移温度の関連性の	固体酸化物燃料電池の機械的特	スの高機能化	
	解明および関連新物質の探索	性評価に関する研究		
		@=\= <u>*</u> =====		
	◎太陽電池への応用に向けた CLS系光道は大人数スの作制は	◎テトラチアフルバレン複合分 スカロルな新規と電流機は対象の		
	CIS系半導体ナノ粒子の作製と	子を用いた新規光電変換材料の 開拓		
	積層構造の制御			
	◎ナノビルディングブロック複	◎ピラー化炭素の合成とリチウ		
	合体の三次元集積化による固体	ムイオン電池負極材料への応用		
	酸化物燃料電池の超高性能化			
				44.30
	◎ポリスルホン酸をグラフトした多	◎ガスハイドレードを潜熱蓄熱材と	◎有機半導体材料を指向した縮環	◎混合整数計画法を用いた分散
	孔質ガラスによる燃料電池用電解 の開発	する低温排熱の貯蔵・輸送	型シロール誘導体の高効率合成	型エネルギー技術の導入選択手
	質膜の開発		法の開発	法の開発
	◎熱音響発電システムの基礎検	◎水素液化用磁気冷凍機を用い	◎省エネルギーデバイス半導体	
	討	た希土類窒化物の磁気冷凍能力	へのイオン注入に向けたパルス	
		実証研究	金属イオンビーム技術の確立	
	○ 同計刊によりハセオにせべ/辿	◎苯禾理種屋立ハマヘザナの問	○ 水菜与た田いナーナウ州よ。 =	
H21	◎反射型近赤外分光法に基づく燃料電池内水分・温度分布の非接触	◎芳香環積層高分子合成法の開発などが必要変換表子への応用	◎水蒸気を用いた一方向性ポーラスアルミニウムの製法の開発	
	料電池内水分・温度分布の非接触 同時計測技術の開発	光のより兀电変換系すへの心用	ヘテルミーワムの聚法の用完	
	回時計測技術の開発 ◎単分散ナノ粒子を原料としたス	○ 京エスルギ―淮 選及 中州ファ ┗	○○:_○U_AIブレン・フニ…いまた上 へ	
	◎単分散ナノ粒ナを原料とした人 ピンコーティング法による燃料電池	◎高エネルギー準単色中性子による軽核の生成核反応断面積の測	高分散によるプロトン伝導性複合	
	ヒノコーティング法による燃料電池 材料薄膜の合成	定と反応機構に関する研究	商分取によるノロトン伝導性複合 酸化物の開発	
	◎三重項光増感型電荷分離シス	C C 及心機構に関する研え ◎オレフィンメタセシス反応を利用	図し初の開光 ②ナノメートル高温超電導体ジョセ	
	◎三里頃元頃恐至電何万離ノステムを利用した色素増感太陽電池	した高効率光機能材料の創成	フソン接合列における巨視的量子	
	の創製	○ 「□」 //」 →	トンネル現象の研究	
	○高密度な隻整合界面を有する高	◎大表面積ナノポーラス金属電極	◎有機半導体材料を指向した多置	◎イオン液体と耐熱性酵素を用い
	性能シリサイド系熱電材料の開発	の電気化学的耐久性評価	換ポリピリジンの効率的合成法の	たバイオ燃料生産プロセスの構築
			開発	THE THE PARTY OF T
	○古州北英東ゴ・ジノフ 中田にウム	○右継流はかこの雨だにしてこか。		
		◎有機溶媒からの電析による三次 元ポーラスアルミニウムの作製	◎セラミックスを出発材料としたマ イクロ波直接プラズマ法による高	
	た酸化物ナンソイヤの高密度自己 成長技術	ルハーフヘノルミー・ノムのTF袋	10日波直接ノフスマ法による局 純度ZnO薄膜の作成法の研究	
	从区区即		市で文41107年1677 下1875日7月九	
	◎高性能二次電池に適した有機正	◎ナノカーボン複合化技術による	◎金ナノ粒子の自己組織化を利	
H22	◎高性能―炎竜池に適し/c有機正 極活物質の検討	リチウムイオン電池酸化物負極材	団金デノ粒子の自己組織化を利用した集積法の開発と機能化	
	1空/ロ7の貝 ツガ大引	リテリムイオン電池酸化物貝極材料の研究開発	円した末頃広り別光と放肥化	
	◎イオン液体ースパッタリング法に	◎量子ナノ構造を利用した高効率	◎有機トランジスタを指向した長鎖	
	●イオン液体ースパラダウング法に より作製したナノ粒子の燃料電池		アルキル置換へテロ芳香族化合物	
	用電極材料への応用	ハr勿 电/6・2 / 前元	の効率的合成法の開発	
	◎イオン液体 電極界面の特異的		マルカードルは、水は、水は、水は、水は、水は、水は、水は、水は、水は、水は、水は、水は、水は	
	電気二重層構造の解明およびそ			
	の制御			
	- A site 3 feeds			
			i .	I .

エネルギーと環境	資源リサイクル	その他
ー エヤルイーと環境 ○ 環境調和型バイオプラスチックの物性向上	<u>員続りソイソル</u> ◎廃プラのケミカルリサイクルプロセスの構	
のための高次構造制御	築~PET複合材からのTPA回収法の確立~	における初期過程の解明
◎金属ナノ粒子を用いたクリーンめっきとそれによるフレキシブルパターン電極の作製と機能	◎廃棄物由来の陰イオン交換体を用いる有害 陰イオン種の除去プロセスの開発	◎大面積光受光素子創製に向けた半導体量子 細線の高密度配列技術の確立
◎新規な可視光・太陽光駆動型酸化タングス テン光触媒の開発	◎電子線照射による白金銅合金ナノ粒子の創成と触媒機能の実証	◎マイクロマルチ噴流の混合と燃料特性に関する実験的研究
©LTAゼオライトの緻密化のための改良型水 熱合成プロセス開発と CO_2 分離応用		◎水力発電用タービンのドラフトチューブサージに関する基礎研究
		◎次世代超高温ガス原子炉の工学的安全性に 関わるヘリウムガスの非定常熱伝達現象の解 明
◎ファインナノマテリアルとしての天然多糖の機能追求に関する研究	◎砂漠化抑制のための汚泥焼成土の有効活用 に関する研究	◎大気圧非平衡プラズマー液相界面の研究
◎放射性廃棄物地層処分のための3次元ボアホールレーダのフィールド実験による実証		◎金属錯体の構造制御に基づく配位炭酸イオンの立体選択性
		◎超音波による二相流速度分布計測システム の開発と気液分離手法の確立
		◎放射光X線分光法を用いた高経年化軽水炉 圧力容器の照射脆化に関する基礎研究
◎バイオマスエネルギー回収プロセスから発生する高濃度窒素廃液処理技術の開発		◎放射光を用いた結晶3Dマッピング法によるク リープ損傷評価法の開発
◎温度応答性球状高分子を利用した重金属イオン除去システムの構築		◎電磁超音波センサとSH波のモード変換を利用 した減肉検査法の開発
◎海水中水素プラズマプロセスによる高濃度二酸化炭素の再資源化法の確立		◎高速増殖炉用電磁ポンプの高速解析法の研究
◎高次ナノ構造体を用いた分子サイズ触媒・光触媒の創製と環境調和型物質変換	◎廃棄碍子を骨材とした塩分浸透抑制モルタ ルの材料開発と評価	◎輸送理論を用いた感度解析手法の高度化
◎超臨界二酸化炭素中における高選択性不斉 光反応の創成		◎原子炉等大型構造材解体に向けた高輝度パルスレーザーによる非熱加工の基礎研究
◎ガスハイドレートスラリーの流動抵抗測定 ~ フロン冷媒の使用量低減に向けて~		◎調和組織制御による次世代原子炉用高強度・ 高靭性材料の開発

		成件名の研究分類別一覧	(4/5)	
年度	エネルギーの変		エネルギー利用の効率化	多様なエネルキー資源の利用
	た高効率有機薄膜太陽電池の開 発	◎電気自動車急速充電器用高周波高効率DC-DCコンバータの実特性評価◎ペロブスカイト型酸化物ー	◎省エネルギーを実現する大面積・高熱流東対応冷却器の局所流量最適化技術の開発◎粒径制御による高性能・高強	
	◎ナノ材料の自己組織化力を利用した高効率光エネルギー変換システムの構築	◎ハロブスガイト型酸化物一 カーボンナノチューブ複合体に よる高活性酸素還元触媒の創製	◎ 私住制御による高性能・高強度熱電酸化物材料の実現	
		◎太陽光で駆動する固定化金属 錯体を利用した水からの触媒的 水素製造デバイスの構築	◎ホームネットワークを用いた 個人適応型省エネ行動推薦シス テムの開発と評価	
H23	クナハイ人の美現	子移動の解明		
	◎酸化タングステンナノ粒子を 中空シリカ粒子に内包した新奇 な可視光応答型光触媒の開発	◎オリビン化合物正極LiFeP04 の遅い電圧緩和の機構解明		
	物の合成	◎有機エレクトロニクス材料の 高効率・環境調和型構築法の開 発		
	◎可視光照射下で駆動する二槽 型光燃料電池の開発と高効率太 陽光エネルギー変換への応用	◎高性能パワーデバイス用SiCウエハの低環境負荷型超平坦化プロセスに関する研究		
	◎表面微細孔を有する金属薄膜を 利用した太陽光吸収・蓄熱による 熱電変換の高効率化	◎大気圧放電プラズマを用いた固体高分子形燃料電池用DLCセパレータの開発	◎酵素型バイオ電池電極用グラ フェンナノファイバー不織布の 開発	
		◎有機イオン性柔粘性結晶の添加によるネットワークポリマー中での効率的なイオン輸送◎融解挙動を持つ錯体ポリマーを用いたプロトン伝導体の開発		
	◎フッ化水素酸を用いたナノ結晶 シリコン熱電材料の粒界清浄化技 術の開発	◎スパイラル形態をもつへリカルグラファイトの創成と形態保持炭素化法の展開		
	◎構造柔軟性を有する多孔性金 属錯体の薄膜化と高度分離システムへの応用 ◎燃料電池における流路・GDL内	◎天然ゴム粒子をテンプレートとする水素シール用ナノコンポジットゴムに関する基礎研究		
	の液水挙動と圧力損失に関する評価手法の確立 ②タンパク質の自己組織化能力	◎PVAからのカーボンナノファイバ	◎量子ビートの利用による超高速	◎酵母由来油脂からの革新的な
	を利用した色素増感太陽電池用ナノ複合体電極の創製 ②蓄電デバイスに用いる高比表面	-作製と電気二重層キャパシタへの応用 ◎PWM励磁時の鉄芯材料ベクトル	光スイッチの省電力化	バイオディーゼル燃料生産プロセスの開発 ②エタノール完全酸化を狙った
	積3次元網目状炭素材料の創製	ヒステリシス特性の研究	動構造に関する研究	直接エタノール型燃料電池用触 媒の微細構造制御と活性評価
H25			◎純スピン流を用いた電流レス情報伝搬技術に関する研究	
			◎高分子鎖1本の流動抵抗が乱流抑制に与える影響の解明に向けた基盤構築 ⑥室温動作する低消費電カグラフェンCMOS論理回路の開発	
	◎分子リンカーを用いる無機有機 複合光触媒材料の創製	◎遷移金属触媒による複素環高 分子の新規合成法の開発に基づく 有機半導体材料の創成	◎燃料粒子, PAHs, すすの同時 計測による混相燃焼場におけるす す生成挙動の解明	◎ユーザーフレンドリーなグラフェンナノリボン開発
	◎半導体量子ドット超格子におけるサブバンド間遷移レートの定量 評価	◎分子検出や電池性能の飛躍的 向上を実現する高次ナノ構造電極 創製とその特性究明	◎バイオマスガスの部分燃焼改質 過程における二酸化炭素と水蒸気 の反応性に関する研究	◎光応答性ナノ多孔体を利用した合金ナノ粒子触媒の創製とバイオマス変換反応への応用
	のp/n接合界面	◎光電変換素子への応用を志向したナノコンポジット薄膜の超精密構 築	タの高精細化技術における新規 プロセス開発	
	◎自律分散型発電・消費ネットワークの全体最適化モデルの開発		◎エバネッセントLDVの開発と次世代潜熱蓄熱輸送媒体の界面複雑熱流動の解明 ◎高効率太陽光発電を実現するための高分子被覆型近赤外吸収性量子ドットの開発	

エネルギーと環境	資源リサイクル	その他
◎バイオマス産物レブリン酸を用いる生分解	◎光駆動型自動分解機構を組み込んだリサイ	◎天然ガス液体燃料製造工程において触媒粒
性生理活性物質DALAの効率的合成法の開 発	クル可能な有機ー無機ハイブリッド材料の開発	子が合成ガス気泡合一に及ぼす影響の解明
	◎細胞内酸化還元制御による微生物燃料電池	● 図低環境負荷アニオン重合系高分子生産技術
能量に関する研究	の発電効率向上	の開発と感光性樹脂材料合成への応用
◎振動抑制と高効率発電を実現する洋上風力		◎大気圧非平衡プラズマ支援ミストCVDを
発電システムの高性能制御		用いた有機材料への酸化亜鉛透明導電膜の形成
◎エネルギー供給の観点からみたごみ処理シ		◎先導的フロー技術を用いた二酸化炭素の高
ステムのあり方に関する研究		効率炭素資源化と有機合成化学への連続的利用 用
		○のポーラスマイクロ粒子の分散によるフォト ニック液晶の高機能化
		ニック 液晶の高機能化
	◎半径流型蒸気タービンを用いた緊急災害時	
とブル一相の電気光学特性の解析	用小型発電装置の開発	アップ式形成手法の確立
◎極低消費電力光メモリに向けたスピン面発		◎環境負荷低減を目指したポリオキシエチレン
光半導体レーザの電流注入円偏光発振		型に替わる新規非イオン性界面活性剤の開発
◎バブルインジェクションを利用した自然循 環型温水器の高効率化に関する基礎研究		
 ◎シュウ酸誘導体を用いる低環境負荷有機合		
成法の開発		
◎ポータブル装置を用いた希土類磁石の選別法		◎AlGaN/GaNゲート絶縁型へテロ接合トランジ
および分析法の確立		スタの絶縁膜形成と界面物性評価
		◎フロー型電解酸化を利用するナノグラフェンの
		高効率低温精密合成
		◎長期運用型消費者向け製品の普及に向けた は歴め四次
		基礎的研究

過去に採択された試験研究助成件名の研究分類別一覧(5/5)

年度	エネルギーの変		エネルギー利用の効率化	多様なエネルキー資源の利用
	◎混合系柔粘性イオン結晶の構 造解析と固体電解質としての展 開		◎ベクトルヒステリシスモデル の高度実用化による電気機器の 低損失・高効率化	◎製鉄プロセスにおけるふく射 排熱を有効利用する光発電モ ジュールの開発
H27	◎固体高分子形燃料電池の単一層電極実現に向けた流動と多孔質電極構造の制御	◎高効率な量子エネルギー変換 材料の開発	◎省エネルギー・省資源型3D プリンタ用樹脂に関する基礎研究	◎電荷分離型構造をもつイオン 結晶を反応場とする水の熱分解 反応
	◎ポルフィリン色素の固体表面 への吸着・金属光還元作用を利 用した新規金属担持法の開発	◎ポリマー添加ゾル-ゲル法酸 化チタンによるペロブスカイト 太陽電池の効率向上	◎液体分離現象を利用した新規 低エネルギー損失型アモルファ ストランス材料の開発	
	◎電気で水素発生を触媒する環 境調和型アミノ酸金属複合分子 の開発	◎シース材料を原料に利用した 鉄系超伝導線材の作製	◎核融合エネルギー変換に活用 する溶融塩の熱的物性向上に関 する研究	
	◎有機半導体材料として機能するポルフィセンの合成およびその評価			
	◎化学エネルギー変換と電気化学反応を組み合わせた高効率バイオマス発電法の開発	◎有機単結晶を配向制御した新規高効率有機薄膜太陽電池の創製	◎超高効率太陽電池の実現に向けた単原子層材料を介する新規 高性能半導体接合技術の開発	◎新規の消波発電装置の開発
H28	◎光応答性有機結晶を用いた光 エネルギーの力学的エネルギー への直接変換	◎レアメタルフリー酸化物半導体Ga-Sn-0の熱電効果の研究	◎原子層へテロ構造を用いた高 効率熱電材料の開発	◎二酸化炭素を原料とした炭素炭素結合生成を可能とする新奇光酸化還元系構築
	◎塗布型有機ELデバイスへの応用を指向した遅延蛍光ポリマー材料の創成	◎有機無機ペロブスカイト太陽 電池の結晶成長機構の解明		
	◎サイズ均一性と高分散性を両立したリチウム硫黄ナノ粒子/カーボン複合電極材の開発	◎計算科学に基づいたFeベース 新規高性能発電材料の創成と評価		
	◎強化学習を利用した電圧制御	◎燃料電池用バイモーダルナノ	◎アドヒージョンリソグラ	◎海洋再生可能エネルギーを利
	機器による配電系統電圧適正化に関する研究 ②高性能電界効果トランジスタ	構造白金族触媒の開発	フィー法を利用した単電子デバイスの開発 ◎チタン合金におけるナノス	用した新規発電・水素製造用電極の開発 ②高効率な有機物酸化を実現す
	受局性能電が効果ドブングスタ 開発に向けた有機半導体/イオン液体界面の電子状態解析	変換・貯蔵材料の開発	ケールの相変態制御法の構築に 基づく新規軽量構造材料の開発	● 同効率な有機物酸化を実現するパラジウムめっき電極の開発
H29	◎酸化還元活性な金属有機構造 体を正極材料とする高性能二次 電池の開発	◎高分子半導体の三成分相分離膜で実現する高効率光電変換		
	◎非白金系触媒としてのニオブ 酸窒化物ナノ粒子の合成と評価	◎高機能性を有するカリウムイ オン電池用新規イオン液体電解 質の開発		
	◎ペロブスカイト太陽電池における入射フォトンに対する光電特性挙動への影響	⊚Material design of single- atom catalysts		

エネルギーと環境	資源リサイクル	その他
◎「光・熱」複合型変換モジュールの設計と 作製		◎高性能核融合炉の実現に向けたトーラスプラズマ中の原子ダイナミクス局所計測法の開発
		◎常温無機イオン液体を用いたウランの無電解析出
		◎光で配線可能な電気伝導性フィルムのワン ステップ合成
		◎TEM内引張『その場』観察法による原子炉 構造材料の健全性評価に関する研究
		◎ミニチャネルによる革新的ダイバータ冷却 に関する基礎研究
◎液/液2相反応系を採用した二酸化チタン光 触媒による1段階フェノール合成		◎固定化酵素技術への応用を指向した環境調和型磁性アパタイトマイクロカプセルの開発
		◎微細流路混相反応器開発のための微細流路 内固気液三相流の流動特性に関する研究
		◎銅、銀、金複合ナノ粒子を可視光吸収部位 としたプラズモニック光触媒の創製
		◎ガイド波による照明柱の健全性評価方法に 関する研究
		◎超伝導液面センサーを用いた液体水素タンク内部のスロッシング現象の解明
		◎データ同化手法による核融合プラズマの実用的平衡再構成法の開発
		◎旋回流れ場を持つ微粉炭火炎に対する二次 元レーザー誘起赤熱法の適用
		◎マイクロ機械共振器を用いた精密磁化測定 による高温超伝導揺らぎの定量評価
		◎超高品質半導体カーボンナノチューブ膜に みられる熱電輸送特性の開拓