熱安定性ウェラブル線量計の開発

木梨憲司 京都工芸繊維大学 材料化学系 kinashi@kit.ac.jp

第30回KRF 助成研究発表会

高分子材料デザインコース

木梨 憲司 准教授

研究テーマ

マ ● 光機能性高分子複合材料の研究
 ● 機能性繊維材料の研究

機能高分子設計研究分野 (2-N203号室:内線7809) mail:kinashi@kit.ac.jp 担当講義:物理化学演習

	(GM計数管	不活性ガスの電離による陽陰極間の パルス電流をカウント
, デジタル	 シンチレーション 検出器 	シンチレータの放射線に対する発光 を検出
(線量計	● 電離箱	電離作用により気体中で作るイオンを 検出し電気信号に変換
	↓ ● 半導体検出器	放射線により電子正孔対が生成され 電流が発生
	✔ 🛑 蛍光ガラス線量計	放射線の照射量に比例した蛍光を出す ガラスを使用
したい アナログ しんしん しんしん しんしん しんしん しんしん しんしん しんしん しん	- フィルム線量計	放射線の照射量に比例して吸光 度が増加するフィルムを使用
	し フリッケ線量計	放射線により鉄イオンの酸化反応 を利用し吸光度が変化
	- クロミック線量計	本研究:放射線の照射量に比例し て吸光度が増加する

<u>なぜウェラブル線量計なのか?</u>

<image>

✔放射線に反応し色変化する繊維の作製

<u>繊維の作り方:遠心紡糸法</u>

Figure (a) Photographic image of the Centrifugal spinning systems and (b) photograph of a fibrous produced by Centrifugal spinning method.

<u>繊維の作り方:遠心紡糸法</u>

Figure Photograph of the forcespinning apparatus.

<u>繊維の作り方:遠心紡糸法</u>

Chem. Commun., 2015, 51, 11170 13

色変化の評価方法

Figure X-ray irradiation and the chromaticity difference measurement system

※本研究では 0.71 Gy/minの線源

Figure L*a*b color space. ΔE : Chromaticity difference. L, a, b:Color coordinates based on L*a*b color space.

$$\Delta E = \sqrt{\Delta L^2 + \Delta a^2 + \Delta b^2}$$

$$\Delta L = L_1 - L_2$$

$$\Delta a = a_1 - a_2$$

$$\Delta b = b_1 - b_2$$

研究結果1 ロイコ色素を用いた熱安定型クロミック線量計

Applied Sciences, 2020, 10, 3789

材料

• PS, THF, MBTT, fluoran leuco dye Black305. PS/THF/MBTT/Black305 (10/35.5/1.0-3.0/1.0-3.0).

紡糸条件

- Needles inner diameter: $160 \,\mu m$ (shaft length: 5 mm).
- Solution flow rate: 100 ml h⁻¹.
- The rotation speed: 15000 rpm.
- The RH of 35 % and temperature of 25 °C.

Figure SEM images of the FCD based on leuco dye prepared from difference concentrations of MBTT/Black305, (a) 1.0/1.0 w/w, (b) 1.0/2.0 w/w, (c) 1.0/3.0 w/w, (d) 2.0/3.0 w/w, (e) 3.0/3.0 w/w.

Figure Dose-response curves at 20 C of FCD based on leuco dye with various concentrations of MBTT and Black305. The black dashed line indicates the point at which the color change can be visually observed.

Figure Photographs of color changes of the fibrous color dosimeter with a MBTT/Black305 ratio at 3.0/3.0 w/w for each X-ray exposure dose.

Figure The color changing mechanisms of FCD based on leuco dye.

Figure Photograph showing aspect of the fibrous color dosimeter with MBTT/Black305 ratio at 3.0/3.0 w/w before and after X-ray exposuse for 80 Gy. (e) Photographs of the clothlike fibrous color dosimeter with MBTT/Black305 ratio at 3.0/3.0 w/w (left) before and (right) after X-ray exposure through the lead sheet cut in a " Ψ " shape.

研究結果2 ジアセチレン化合物を用いた熱安定型クロミック線量計

Dyes and Pigments, 2021, 191, 109356

材料

Polylactic acid (PLA), 10,12-Pentacosadiynoic acid (PCDA), Chloroform, Ethanol.

- Solvent: Chloroform/Ethanol 8/2 (w/w).
- PLA concentration: 5, 7, 9, 11, 13, 15 wt%.
- PCDA weight: 5, 10, 20, 40 phr of PLA.

紡糸条件

Needles inner diameter: 160 µm (shaft length: 5 mm).

- Solution flow rate: 100 ml h⁻¹.
- The rotation speed: 15000 rpm.
- The RH of $30 \pm 5\%$ and temperature of 25 ± 2 °C.

Figure The color changing mechanisms of FCD based on leuco dye.

_			
		Viscosity (mPa s)	Fiber diameter (µm)
_	PLA	128.33 ± 0.58	2.53 ± 0.81
	PCDA@PLA_5	132.67 ± 2.08	3.29 ± 1.59
	PCDA@PLA_10	133.33 ± 1.53	3.24 ± 2.15
	PCDA@PLA_20	134.67 ± 2.52	6.38 ± 2.06
	PCDA@PLA_40	135.33 ± 3.21	6.68 ± 4.87

Figure (a-c) FE-SEM images of centrifugally spun PCDA@PLA fibers prepared from various PLA/PCDA solutions with different concentrations of PCDA and the (f) viscosity of each PLA/PCDA solution.

Figure Dose-response curves at 25 C of FCD based on diacetylene with various phr of PCDA. The black dashed line indicates the point at which the color change can be visually observed.

Figure Photographic images of the FCD following various exposure doses. The leftmost photographs show the fibers without exposure, and the exposure dose increases from left to right, up to 40 Gy.

Figure Photographic images of the clothlike chromic dosimeter (a) before, and (b) X-ray exposure through the lead sheet cut in a "♡" shape.

応用展開 宇宙放射線の影響

国際宇宙ステーションの簡易曝露実験装置(きぼう)にて 宇宙線暴露実験を1年間実施

Figure Image of cosmic radiation exposure to the sample in ISS.

まとめ と 今後の展望

